

The Sleep, Activity, Fatigue, and Task Effectiveness (SAFTE™) Model and Fatigue Avoidance Scheduling Tool (FAST™)

Fatigue and Alertness Management using the *SAFTE™* model and *FAST™*

Steven R. Hursh, Ph.D.

Science Applications International Corporation, 410-538-2901

Professor, Johns Hopkins University School of Medicine

Hurshs@saic.com

Purpose

- Review the basic concepts of fatigue and time-of-day effects on cognitive performance.
- Review the DoD Sleep, Activity, Fatigue, and Task Effectiveness (SAFTE) Model.
- Review and Demonstrate the Fatigue Avoidance Scheduling Tool (FAST™).

Fatigue Effects on Performance

- ✓ Impaired logical reasoning and decisionmaking
- ✓ Impaired vigilance and attention
- ✓ Slowed mental operations (e.g. arithmetic)
- ✓ Loss of situational awareness
- ✓ Slowed reaction time
- ✓ Short cuts and lapses in "optional" or selfpaced behaviors

ALERTNESS & COGNITIVE PERFORMANCE

Circadian Rhythms of Vigilance Related Degradations

CIRCADIAN RHYTHM IN SLEEP RELATED TRAFFIC ACCIDENTS (Israel, 1984-1989)

Figure 3.12. Hourly distribution of traffic accidents in Israel caused by falling asleep while driving for 6 consecutive years, 1984–1989, in comparison with hourly distribution of all traffic accidents for the same time period.

Driving Simulator Accidents

Limited Sleep Schedule Study (WRAIR Data)

The Sleep, Activity, Fatigue and Task Effectiveness Model (SAFTE™)

- Description: Model/simulation of how time of day (circadian rhythms) and sleep/wake patterns influence cognitive capacity and risk of performance error.
- Purpose: Part of fatigue management system to anticipate worker fatigue, optimize schedules to reduce risk of error, and improve operator safety, effectiveness, and quality of life.
- Benefit: Summarizes the major observations from research and extends them to real world problems, based on a valid and patented model.

Lineage of SAFTE Model

- ✓ AURA Sleep Module (1989) BRL (Terry Klopsic)
- ✓ FORTRAN Sleep Model (1993) SAIC/WRAIR (Hursh & McNally)
- ✓ Sleep and Performance Model (1996) -SAIC/WRAIR (Hursh)
- ✓ Sleep and Performance Simulation for IUSS (1997) - SAIC/Natick (Hursh)
- ✓ SAFTE Model (1998, 1999, 2000) SAIC/ Brooks AFB (Hursh)

Government Experience

- US Army
 - Supported initial development of fatigue model
 - Continued support for specialized applications
- US Air Force
 - ✓ Approximately \$1M investment for scheduling tool
 - ✓ Fatigue Avoidance Scheduling Tool (FAST) user testing
- US Navy & US Marines
 - ✓ Testing alternative watch standing schedules
 - ✓ Applications for scheduling special operations
- Federal Railroad Administration
 - Current contract for schedule evaluation and safety analysis
 - ✓ Potential expansion to other transportation modes

SAFTE/FAST Development Team

- Air Force Research Laboratory, Brooks AFB
 - Dr. William Storm
 - ✓ Dr. James C. Miller
 - ✓ CAPT William Hurtle
- Walter Reed Army Institute of Research
 - ✓ COL Gregory Belenky
 - ✓ Dr. Thomas Balkin
 - ✓ COL Daniel Redmond
- Federal Railroad Administration
 - ✓ Dr. Thomas Raslear
 - ✓ Michael Coplen
- NTI, Inc.
 - ✓ Dr. Douglas Eddy
 - ✓ Dr. Timothy Elsmore
- SAIC
 - ✓ Dr. Steven Hursh

Schematic of SAFTE™ Simulation Model

Sleep, Activity, Fatigue and Task Effectiveness Model

Validation of SAFTE Model

CIRCADIAN RHYTHM OF CORE TEMPERATURE AND SUBJECTIVE ALERTNESS

(Monk & Embrey, 1981)

Figure 2.10. Circadian rhythms in oral temperature (•—•) subjective alertness (o—o) from six rapidly rotating shift workers, each studied for a month. Two cycles of the 12 points defining each rhythm have been plotted (after Monk and Embrey, 1981). Reprinted by permission of Pergamon Press PLC.

Symmetrical Multi-Oscillator Circadian Rhythm Neutral Parameter Model

Plateau is approximately mid-cycle: 1300 hrs for a person sleeping 0000 to 0800 Note Amplitude Increase after 72 hrs Sleep Deprivation

Circadian Component of Performance (Temperature & Arousal)

TWO MAJOR COMPONENTS OF PERFORMANCE SLEEP RESERVOIR BALANCE (SWC) AND CIRCADIAN RHYTHM OF ALERTNESS

Each function is scaled in comparable units of percent of baseline performance.

Typical Performance Prediction with 8 hrs Sleep from 2200 to 0600 hrs

Cognitive Effectiveness

TWO DRIVERS OF "SLEEPINESS" Sleep Propensity and Sleep Debt (Sleep-Wake Cycle)

Sleep Propensity & Sleep-Wake Cycle

MODEL OF VARIATIONS IN "SLEEPINESS"

COMPARISON OF "SLEEPINESS" TEST RESULTS Broughton and Mullington (1992)

SAFTE MODEL

Predictions and Data for Total Sleep Deprivation (WRAIR 72 hr Study)

Decline of Performance with Total Sleep Deprivation

SAFTE Model (red line) Predicts the Average Results with Precision

Sleep & Performance Model vs Angus & Heslegrave (1985)

Mean of Normalized Performance Measures

Walter Reed Restricted Sleep Study

SAFTE Model (red line) Predicts the Average Results with Precision

The SAFTE Model "Best in the World"

- The DOD sponsored a recent comparison of six fatigue models from around the world.
- All models attempted to predict the results from four standard scenarios.
- •The SAFTE model had less error than any model tested and was combined with a convenient and logical user interface, the fatigue avoidance scheduling tool FAST.

What Can Be Done to Avoid Fatigue? Fatigue Countermeasures

- Planning for eight hours of sleep per day at optimal time
- Conducive sleep environment: dark, quiet, comfortable
- 30 min to 3 hr strategic naps
- Regular recovery sleep following long duty days
- Circadian adjustments for night-shift workers
- Caffeine, with caution
- Procedural Safeguards: Check-lists, co-worker double-checks, and enhanced monitoring
- Integration of fatigue assessment into safety programs

Schedule Evaluation Tools

- Fatigue management tools are required for:
 - ✓ The improvement of work schedules
 - ✓ Training of effective rest habits "life style" decisions
 - ✓ Isolation of fatigue related events
 - ✓ Planning for the use of mitigations and countermeasures
 - Staffing analysis and workforce planning

Fatigue Risk Management Tools

- FAST ™ Fatigue Avoidance Scheduling Tool
 - ✓ Prospective forecasting of fatigue risk under proposed work/rest schedules.
 - Retrospective assessment of fatigue leading up to an event.
 - ✓ Uses the SAFTE model of fatigue developed by the DOD.
- IFAP Incident Fatigue Assessment Protocol
 - Questionnaire and schedule assessment software to aid event analysis.
 - ✓ Integrates data into FAST for fatigue assessment.
- FAST-MAN ™ FAST for Management
 - ✓ Access database system for multiple personnel work schedules
 - ✓ Rapid assessment program for work force evaluation.
 - Cross-walk to database of safety related errors and rules violations

Fatigue Avoidance Scheduling Tool (FAST™)

- FAST™ is a fatigue assessment tool based on the SAFTE™ model
- Developed for the US Air Force and the US Army.
- NTI and SAIC completing a Phase II SBIR program.
- DOT/FRA sponsored work has lead to a transportation specific version.
- DOT field validations underway.

Overview of FAST-TR

Example of Commercial Application

- FAST-TR ™ is designed to serve as a schedule evaluation and accident investigation tool in a single software package for use by the railroad industry.
- Refine prediction with information on actual sleep or special circumstances.
- Based on FAST[™], the Air Force tool
- Transportation version uses a two-step estimation process:
 - 1. Estimate sleep pattern based on work schedule
 - 2. Estimate performance effectiveness based on sleep pattern

FAST-TR Graphical Screen Options

FAST-TR Schedule Entry Options

FAST-TR

AutoSleep Sleep Generator

ΙM

- Based on the work schedule alone FAST-TR can generate a reasonable sleep schedule.
- FAST-TR sleep pattern estimation methodology is called AutoSleep. It calculates a reasonable pattern of normal sleep to accompany a work schedule entered by the user.
- The pattern of sleep can be tailored to specific habits of the individual or may be set to mimic the average pattern of railroad engineers (see Pollard, 1996).
- AutoSleep can be used to estimate sleep patterns under irregular work schedules typical of rail operations or to estimate sleep patterns under regular or rotating shift-schedules.

Optional AutoSleep Input

Freight Engineer Effectiveness Sleep Pattern Estimated with AutoSleep

SAFTE Model and *FAST* tool Predict Increases in Accident Related Lapses

- Effectiveness is a measure of speed of making correct responses.
- Lapses increase dramatically with decreasing effectiveness (see next chart).
- Reduced effectiveness can predict errors resulting from on-the-job lapses associated with excessive fatigue.
- Low levels of effectiveness can be used to implicate fatigue as a possible contributing factor to human factors incidents and accidents.

Lapses Increase with Decreasing Effectiveness

from *FAST* (revised)

Sleep Dose Response Study - Experimental & Recovery Days - WRAIR Data

B2 Stealth Bomber

Fatigue Avoidance Scheduling ToolTM Mission Planning

Fatigue Avoidance Scheduling ToolTM Mission Planning

Fatigue Avoidance Scheduling ToolTM Mission Planning

Lounge Chair Solution for In-flight Naps

"Jet-Lag" Effects

Current Corporate Interest

- Burlington Northern Santa Fe Railroad
- New Jersey Transit
- Groendyke Transport
- Comanche Peak Nuclear Power Plant
- Susquehanna Nuclear Power Plant
- Palo Verde Nuclear Generating Station
- James A. FitzPatrick Nuclear Power Plant
- Eight other nuclear power plants
- Electric Power Research Institute
- Nuclear Energy Institute

FAST as a Work Schedule Tool

- Work schedule evaluation and design tool is intended to improve work and sleep scheduling based on predicted changes in performance.
 - ✓ Prospective decision aid based on prognostic model
 - ✓ Reliable and valid ordinal predictions are crucial.
 - ✓ Predictions based on normative estimates of sleep patterns and requirements for population of interest.
- May be used by management to design generic schedules
- May be used by employees as a self-management decision aid and training tool

FAST as an Accident/Event Investigation Tool

- Accident investigation tool is intended to evaluate the likelihood that fatigue was a participating cause in an accident.
 - Retrospective evaluation tool based on *diagnostic* model.
 - ✓ Reliable and valid *quantitative* predictions are required.
 - ✓ Predictions based on most accurate information available on work and sleep patterns of specific participants.
- Requires work schedule information from management and
- Requires employee sleep history

SAFTE™ Model Development

Identify Weaknesses – Research Solutions

- Areas for improvement, all fatigue models:
 - Individual differences between people
 - Recovery from chronically restricted sleep
 - Differential effects of sleep aids
 - Differential effects of alertness/wakefulness aids
 - Interactive effects of sleep aids and alertness/ wakefulness aids
 - Differential task responses to wakefulness & time of day
 - Differential effects of photic and non-photic cues on acrophase shifts
 - Relationship between circadian and circasemidian rhythms

Fatigue and Alertness Management using

FASTTM

End of Presentation

Steven R. Hursh, Ph.D.

Science Applications International Corporation, 410-538-2901

Professor, Johns Hopkins University School of Medicine

Hurshs@saic.com

Key Features	Advantages
Iterative Process Simulation Model	Effects of any schedule down to the minute
	Effects of any sleep pattern
	Adaptive to actigraph or temperature data
☐ Homeostatic	Declining sleep intensity during sleep period
	Adaptive equilibrium of performance under less than optimal schedules of sleep
■ Multi-oscillator Circadian Process	Asymmetrical cycle of performance
Clock Driven Circadian Process	Mid-afternoon dip in performance
Event Driven Sleep-Wake Cycle	Predominant early morning nadir in performance
☐ Circadian Variation in Sleep	Circadian variations in sleep quality.
Propensity and Intensity	Limits on performance with day time sleep
Sleep Quality and Fragmentation	Environmental effects on sleep quality
	Sleep Apnea
Sleep Inertia	Post-awakening slowing of performance
Dynamic Adjusting Circadian	Shift schedules and "jet lag" effects
Phase	Duration of adjustment
Rate of Phase Adjustment is Solar	Rate of phase adjustment to shift work is much
Light Sensitive	slower than time zone adjustment
	Reflects effects of light and social cues
	Performance at extremes of sleep deprivation
performance variance during sleep deprivation	Expected levels of performance under any combination of sleep and sleep deprivation
Task Effectiveness Parameters	Predict variations relevant operator performance

SAFTE Model PERFORMANCE TRANSLATION FUNCTIONS

Translation Function for Thruput of Correct Responses

Complex Reaction Time Task

PILOT COMPLEX REACTION TIME

